Effect of Air-Sea Temperature Difference on Ocean Microwave Brightness Temperature Estimated from AMSR, SeaWinds, and Buoys
نویسنده
چکیده
The effect of air-sea temperature differences on the ocean microwave brightness temperature (Tb) was investigated using the Advanced Microwave Scanning Radiometer (AMSR) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) during a period of seven months. AMSR Tb in the global ocean was combined with wind data supplied by the scatterometer SeaWinds aboard ADEOS-II and air temperature given by a weather forecast model. Tb was negatively correlated with air-sea temperature difference, its ratio lying around –0.4K/°C at the SeaWinds wind speed of 14 m/s for the 6 GHz vertical polarization. Tb of AMSR-E aboard AQUA during 3.5 years was combined with ocean buoy data, and similar results were obtained.
منابع مشابه
TGRS-2006-00626 An Ocean Surface Wind Vector Model Function for a Spaceborne Microwave Radiometer
Surface wind vector measurements over the oceans are vital for scientists and forecasters to understand the Earth's global weather and climate. In the last two decades operational measurements of global ocean wind speeds were obtained from passive microwave radiometers (SSM/I’s); and over this period, full ocean surface wind vector data were obtained from several NASA and ESA scatterometry miss...
متن کاملA Study on Extracting the Trend of Thin Ice Distribution in the Sea of Okhotsk Using Amsr-e and Amsr2 Data
Passive microwave radiometers onboard satellite can penetrate clouds and can monitor the global sea ice distribution on daily basis. It is not easy to extract sea ice thickness information from satellite data. In 2012, the authors have developed a method to detect thin ice area using the brightness temperature data derived from the passive microwave sensor AMSR-E onboard Aqua satellite. The bas...
متن کاملAn algorithm to detect sea ice leads by using AMSR-E passive microwave imagery
Leads are major sites of energy fluxes and brine releases at the air-ocean interface of sea-ice covered oceans. This study presents an algorithm to detect leads wider than 3 km in the entire Arctic Ocean. The algorithm detects 50 % of the lead area that was visible in optical MODIS satellite images. Passive microwave imagery from the Advanced Microwave Scanning Radiometer – Earth Observation Sy...
متن کاملEstimate of Hurricane Wind Speed from AMSR-E Low-Frequency Channel Brightness Temperature Data
Two new parameters (W6H and W6V) were defined that represent brightness temperature increments for different low-frequency channels due to ocean wind. We developed a new wind speed retrieval model inside hurricanes based on W6H and W6V using brightness temperature data from AMSR-E. The AMSR-E observations of 12 category 3–5 hurricanes from 2003 to 2011 and corresponding data from the H*wind ana...
متن کاملDirect assimilation of AMSR - E brightness temperatures for estimating sea - ice concentration
In this paper a method to directly assimilate brightness temperatures from the Advanced Microwave Scanning Radiometer (AMSR-E) to produce ice concentration analyses within a three-dimensional variational data assimilation system is investigated. To assimilate the brightness temperatures a simple radiative transfer model is used as the forward model which maps the state vector to the observation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007